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Abstract

We note that when a quantum system involves exceptional points, i.e. the
special values of parameters where the Hamiltonian loses its self-adjointness
and acquires the Jordan block structure, the corresponding classical system
also exhibits singular behaviour associated with the restructuring of classical
trajectories. A system with the crypto-Hermitian Hamiltonian H = (p2 +
z2)/2−igz5 and hyper-elliptic classical dynamics is studied in detail. Analogies
with supersymmetric Yang–Mills dynamics are elucidated.

PACS numbers: 03.65.−w, 12.60.Jv

1. Introduction

A sufficient condition for the spectrum of a Hamiltonian to be real is its self-adjointness,
H † = H . However, there exists a rich class of systems whose Hamiltonian is not manifestly
Hermitian, but the spectrum is still real. Probably, the simplest such example is the matrix
Hamiltonian:

H =
(

1 1
0 2

)
(1)

with two real eigenvalues λ1 = 1 and λ2 = 2 respectively. Such systems have been
intermittently discussed since the mid-seventies [1], but interest in this problem was
considerably boosted after paper [2] appeared, where systems with complex potentials
V (x) = x2(ix)ε were studied, and it was shown that the spectrum of the corresponding
Hamiltonians is real.

Generically, a Hamiltonian involving only real eigenvalues can be transformed in a
manifestly Hermitian form by a similarity transformation [3], H → RHR−1. If H is not
manifestly Hermitian, R is not unitary. This amounts to modifying the Hilbert space measure
so that the probability P = 〈ψ |M|ψ〉 defined with the new measure M is conserved and the
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theory is unitary2. One can call a Hamiltonian of this type crypto-Hermitian (Hermitian in
disguise) [4, 5].

However, not all Hamiltonians with real eigenvalues are crypto-Hermitian. In some cases,
a Hamiltonian cannot be rendered Hermitian (and eventually diagonalized) by a similarity

transformation. The simplest example is a 2×2 matrix representing a Jordan block, H = (1 1
0 1

)
.

The exceptional points when this happens are associated with the degeneracy of eigenvalues
[6]. Exceptional points have measure zero in the space of parameters.

There are also exceptional points involving multidimensional Jordan blocks. For a higher
derivative Pais–Uhlenbeck oscillator [7] at equal frequencies, the dimension of emerging
Jordan blocks is even infinite [8, 9]. A more typical kind of an exceptional point is when only
a couple of eigenvalues coalesce. By changing the parameters beyond the exceptional point,
a pair of complex eigenvalues that are conjugate to each other appears3.

A numerical study performed in [2] displayed an infinite number of exceptional points in
the parameter ε for the Hamiltonian

H = p2 + z2(iz)ε. (3)

The exceptional points lie in the interval ε ∈ (−1, 0). The leftmost exceptional point is
ε∗ ≈ −0.578. When ε < ε∗, the spectrum of the Hamiltonian involves only one real
eigenvalue (the ground state), with all other eigenvalues coming in complex conjugate pairs.
At ε = ε∗, one of such pairs coalesces and, at still larger ε, is transformed into a pair of close
real eigenvalues. Then comes the turn of the second pair. The infinite number of exceptional
points has an accumulation point at ε = 0 [10]. At ε > 0, complex eigenvalues disappear and
the Hamiltonian is crypto-Hermitian.

A similar phenomenon was observed in [11] for the Hamiltonian

H = p2 + z2

2
− igz5. (4)

There are two different spectral problems corresponding to this Hamiltonian (see [11, 12] for
detailed explanations). One of the problems is defined in the Stokes wedges:

− π

14
< Arg(z) <

3π

14
,

11π

14
< Arg(z) <

15π

14
,

(5)

including the real axis. It turns out that the spectrum is real there for all values of g. But for
another spectral problem defined in the wedges

−5π

14
< Arg(z) < − π

14
,

15π

14
< Arg(z) <

19π

14

(6)

in the complex z-plane, the situation is different. The spectrum is real (and the Hamiltonian
is crypto-Hermitian) for large enough g, but the system involves an infinite number of

2 The explicit forms of R and M for the Hamiltonian (1) are

R =
(

1 −1
0 1

)
, M = RT R =

(
1 −1

−1 2

)
. (2)

3 Again, the simplest example is the matrix H = (1 1
α 1). When α is small and positive, we have a pair of close real

eigenvalues. When α is small and negative, there is a pair of complex conjugate eigenvalues. α = 0 is the exceptional
point.
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exceptional points at small g. If g < g∗ ≈ 0.037, a pair of complex eigenvalues appears. If
g < g∗∗ ≈ 0.007, there are at least two such pairs, etc.

A question that can be asked is: whether the presence of these quantum exceptional points
displays themselves in some way also in the dynamics of the corresponding classical systems?
A partial answer to this question was obtained in [13] where a series of critical values of the
parameter ε, where the pattern of classical trajectories in the problem (3) is changed, was
found. The values of the classical exceptional points do not coincide with the values of the
quantum exceptional points. One can only say that the presence of the former is associated
with the presence of the latter.

The problem (3) is rather complicated, however. The Riemann surface for the potential
∼z2+ε has generically an infinite number of sheets; the classical trajectories can visit a number
of these sheets and look complicated. That is why we decided to study this question for the
system (4), which is much simpler. The classical trajectories represent in this case hyper-
elliptic functions known to mathematicians [14].

The result is as follows. There are no classical exceptional points for the system (4) with
a positive energy. When the energy is negative, there is a single classical exceptional point:

gclass
∗ = 1

5

(
− 3

10E

)3/2

≈ 0.0329

|E|3/2
. (7)

As was mentioned above, a classical exceptional point is the point where the pattern of the
classical trajectories changes. For the system (4), the reason for this change is very simple: it
happens that at g = gclass

∗ two of the five turning points, i.e. two of the five solutions to the
equation

V (x) = z2

2
− igz5 = E < 0, (8)

coalesce. This phenomenon has a lot in common with the so-called Argyres–Douglas
phenomenon in supersymmetric Yang–Mills theory [15]). We will dwell upon this issue
in section 4.

Before discussing the dynamics of the system (4), we want to make few comments on the
classical dynamics of a simpler system:

H = p2 + ω2z2

2
+ igz3, (9)

where exceptional points do not appear at either the classical or the quantum level.

2. Complex cubic potential and elliptic dynamics

Consider the system (9). Complex classical trajectories are the solutions to the equation

ż2

2
+

ω2z2

2
+ igz3 = E. (10)

The solutions to this equation with real positive energies (especially, in the case ω = 0) were
found numerically in [2]. The solutions with real negative energies were found in [11]. A
simple remark that we want to make here is that the solution to equation (10) has a name—it
is the Weierstrass function. Let us for simplicity set ω = 0, g = 1. The equation is brought
into the canonical Weierstrass form [16],

ẏ2 = 4y3 − g2y − g3, (11)

with g2 = 0, g3 = E/2, by setting z = 2iy.

3
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Figure 1. Periods of the Weierstrass function.

The Weierstrass function z = P(t, g2, g3) is an elliptic double-periodic complex function.
Generically, the periods are complex, but in our case one of the periods is real. For positive
energies,

T1 = 5

√
π

6

�(4/3)

�(11/6)
E−1/6 ≈ 3.434 E−1/6. (12)

Another period is still complex, T2 = T1eiπ/3. T2 is obtained from T1 by rotation in the
complex E plane, E → Ee−2iπ . Any linear combination of T1 and T2 with integer coefficients
is also a period. A purely imaginary combination iT̃ = 2T2 − T1 = i

√
3T1 represents a

particular interest. The physical interpretation of the periods T1 and T̃ is clear [2, 11]. A
periodicity with respect to the real time shift t → t + T1 is a usual physical periodicity of the
trajectories. For all trajectories, the period is the same. The imaginary time shift transforms
one trajectory into another4.

One can also be interested in the solutions to equation (10) at complex E. It is still a
Weierstrass function, but all its periods are now complex. This means that the solution is not
periodic in real physical time. Such solutions were studied numerically in [17].

The family of all trajectories contains two distinguished members that can be called stem
trajectories. One of the stem trajectories connects two turning points (solutions to the equation
V (z) = iz3 = E) in the lower half-plane: z1 = E1/3 e−5iπ/6 and z2 = E1/3 e−iπ/6. Another
stem trajectory goes from the turning point z3 = iE1/3 to infinity. The shift t → t + iT̃ /4
transforms one stem trajectory into another. The shift t → t + iT̃ /2 transforms the function
z = 2iP(t, 0, E/2) to z = 2iP(−t, 0, E/2) and the shift by iT̃ leaves the Weierstrass function
intact. This is all illustrated in figures 1 and 2.

Translating these observations into a standard mathematical language, one can say that the
Weierstrass function describes the motion over the Riemann surface of the function

√
E − iz3.

The turning points and infinity are nothing but the branching points of this function. This
Riemann surface has the topology of torus. Two periods T1,2 correspond to two cycles of this
torus.

One can also plot the imaginary time trajectories 2iP(a + it̃ , 0, 1/2), t̃ ∈ (0, T̃ ), and
observe by inspecting equation (11) that they coincide up to a sign with the real time trajectories
2iP(t̃ − ia, 0,−1/2) having negative energies and studied in [11].

4 This transformation can be interpreted as a gauge transformation [11], but it is not a point of interest for us now.
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Figure 2. The trajectories z = 2iP(t + ia, 0, 1/2), t ∈ (0, T1). The vertical line (a = 0) is the
stem trajectory connecting the branching points z = i and z = ∞. The ‘smile’ (a = T̃ /4) is the
stem trajectory connecting the branching points z = e−5iπ/6 and z = e−iπ/6. The trajectories with
intermediate values a = T̃ /16 and a = T̃ /8 are also plotted.

1

2

3

Figure 3. Stem trajectories for the potential −iz5.

3. The potential V (z) = z2/2 − igz5 and hyper-elliptic dynamics

Classical complex trajectories for the Hamiltonian (4) have much in common with the elliptic
trajectories of the previous section. They are hyper-elliptic trajectories describing the motion
over the Riemann surface of the function

√
E − V (z). This Riemann surface has genus 2 and

two pairs of cycles. The latter implies that the equation

ż2

2
+ V (z) = E (13)

has now different types of solutions stemming from the trajectories that connect three different
pairs of branching points of the function

√
E − V (z). First, let the energy be positive and

V (z) = −iz5 (without the quadratic term). The branching points are in the vertices of the
pentagon and at infinity. Three different stem trajectories are depicted in figure 3. The
corresponding periods are [2, 11]

T1 = 7

5

√
2π cos

π

10

�(6/5)

�(17/10)
E−3/10

T2 = 7

5

√
2π cos

3π

10

�(6/5)

�(17/10)
E−3/10,

(14)

and T3 = T1 − T2.
Similar to what we had for the cubic potential, the solutions to equation (13) are also

periodic with respect to imaginary time shifts:
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Figure 4. Turning points. E = 1, g = 0.1.

iT̃1 = i
7

5

√
2π

(
1 + 2 sin

3π

10
+ sin

π

10

)
�(6/5)

�(17/10)
E−3/10

iT̃2 = i
7

5

√
2π

(
1 + sin

3π

10

)
�(6/5)

�(17/10)
E−3/10

iT̃3 = i
7

5

√
2π

(
sin

3π

10
+ sin

π

10

)
�(6/5)

�(17/10)
E−3/10.

(15)

The periods (14, 15) are all inter-related under rotations in the complex E plane (the
monodromies)5. For example,

T1(E e−2iπ ) = iT̃2 − T2

2
, T2(E e−2iπ ) = iT̃3 − T3

2
. (16)

This leads to three families of trajectories with positive energies and three families of
trajectories with negative energies6.

Let us now switch on the quadratic term and investigate how the pattern of trajectories is
changed when changing g. First, let the energy be positive. Note that for all g, equation (8)
still has five distinct roots (see figure 4).

We see that the turning points are still symmetric with respect to the imaginary axis.
There are still three families of trajectories stemming from the trajectories that have the same
qualitative pattern as in figure 3. Nothing changes essentially when g is changed.

When E < 0, the situation is different. There is a point (7) where two of the roots of
equation (8) coalesce. The root patterns slightly above the exceptional point g = g∗ and
slightly below it are shown in figure 5.

When g > g∗, there are three families of orbits. Their stem trajectories are shown in
figure 6(a). When g < g∗, the pattern of the stem trajectories is different (see figure 6(b)). One
can note that the stem trajectory connecting the low pair of the turning points with Re(x) �= 0
exists at both g > g∗ and g < g∗, but its form is different. When g → g∗ + i0, the trajectory
crosses itself, after which the ‘appendix’ going around the low turning point at the imaginary
axis disappears.

5 See Proposition 7 in [18].
6 To be more precise, the third family is degenerate in this case and consists of only one member: the stem trajectory
starting at z = iE1/5 and going away to z = i∞ in finite time, tescape = T3/2.
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Figure 5. Turning points. E = −1; (a) g = 0.06, (b) g = 0.03.

(a) (b)

Figure 6. Stem trajectories. E = −1; (a) g = 0.06, (b) g = 0.01. The small gaps between the
vertical lines going to i∞ and the curves below are indistinguishable.

4. Analogies with SYM

As was already mentioned, the restructuring of classical trajectories observed in this paper has
much in common with the Argyres–Douglas phenomenon that occurs in SYM theory. Let us
briefly explain this point here (see [19] for more details).

N = 2 supersymmetric gauge theories are known to include vacuum moduli spaces:
valleys of degenerate classical vacua parametrized by vacuum expectation values of scalar
fields [20]. These valleys have some distinguished singular points where the mass of certain
objects present in the theory (the monopoles and dyons) vanishes. The original AD observation
was that, in some theories and for certain values of parameters, the moduli space singularities
might coalesce.

An analogy between this phenomenon and the classical exceptional point (7) exists, but
is not so manifest. It becomes much more clear for the theories where N = 2 is broken
down to N = 1. The continuous degeneracy of the vacuum valleys is lifted in this case, and
we are left with a finite number of different classical vacua. These vacua can be separated
by domain walls, the classical solutions to the equations of motion with proper boundary
conditions. Mathematically, domain walls interpolating between the classical vacua play
exactly the same role as the stem trajectories interpolating between the turning points in the
QM models discussed above.

The point is that, in some N = 1 models, the parameters can be chosen such that the
classical vacua coalesce. This phenomenon is akin to the original AD phenomenon (merging
of singularities in vacuum moduli spaces). One can call it the AD phenomenon of the second
kind. It was first discovered for a somewhat exotic model based on the G2 gauge group and

7
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involving besides N = 1 gauge supermultiplet three different chiral multiplets S
i=1,2,3
α=1,...,7 in the

fundamental representation of G2 [21]. The superpotential of the model is

W = −m

2

(
Si

α

)2 − λ

6
eijkf

αβγ Si
αS

j

βSk
γ , (17)

where f αβγ is the invariant antisymmetric tensor of G2
7. To analyse the vacuum structure,

one has to add to the superpotential (17) a nonperturbative instanton-generated superpotential
of the Affleck–Dine–Seiberg type [22]. In this case, it has the form

W inst = �9

B2 − detM
, (18)

where B and M are the gauge-invariant moduli:

Mij = Si
αSj

α, B = 1
6εijkS

i
αS

j

βSk
γ (19)

and � is the confinement scale.
Adding the superpotentials (17) and (18), we obtain a theory with two dimensionless

parameters: the Yukawa coupling λ and the ratio mass m/� respectively. The equation
determining the chirally asymmetric classical vacua8 is of the sixth order:

∂W
∂(moduli)

= 0 −→ mu4

(
1 − λ2u

m2

)2

= �9, (20)

where u = 1
3 TrM. Generically, there are six distinct solutions. However, when λ2 ≈

0.385 m2/�2, two of these vacua coalesce.
The simplest model where the AD phenomenon of the second kind occurs is based on the

SU(2) gauge group and involves a massive adjoint chiral multiplet and a pair of fundamental
chiral multiplets. This model obtained by a deformation of N = 2 supersymmetric QCD
(the model involving besides the gauge N = 2 multiplet also a matter hypermultiplet) and
analysed in [24] involves generically three vacua, but, for some values of masses and Yukawa
couplings, two of them coalesce.

When the vacua merge, the domain wall interpolating between them disappears. The
analogy with the classical exceptional point (7) is obvious.
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